向量函数思想总结
发表时间:2025-05-01向量函数思想总结(实用14篇)。
⧈ 向量函数思想总结
正弦定理的证明
用余弦定理:a^2+b^2-2abCOSc=c^2
COSc=(a^2+b^2-c^2)/2ab
SINc^2=1-COSc^2
SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2
=[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2
同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2
得证
正弦定理:三角形ABC中 BC/sinA=AC/sinB=AB/sinC
证明如下:在三角形的外接圆里证明会比较方便
例如,用BC边和经过B的直径BD,构成的直角三角形DBC可以得到:
2RsinD=BC (R为三角形外接圆半径)
角A=角D
得到:2RsinA=BC
同理:2RsinB=AC,2RsinC=AB
这样就得到正弦定理了
2
一种是用三角证asinB=bsinA
用面积证
用几何法,画三角形的外接圆
听说能用向量证,咋么证呢?
三角形ABC为锐角三角形时,过A作单位向量j垂直于向量AB,则j 与向量AB夹角为90,j与向量BC夹角为(90-B),j与向量CA夹角为(90+A),设AB=c,BC=a,AC=b,
因为AB+BC+CA=0
即j*AB+J*BC+J*CA=0
|j||AB|cos90+|j||BC|cos(90-B)+|j||CA|cos(90+A)=0
所以asinB=bsinA
3
用余弦定理:a^2+b^2-2abCOSc=c^2
COSc=(a^2+b^2-c^2)/2ab
SINc^2=1-COSc^2
SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2
=[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2
同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2
得证用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=(a^2+b^2-c^2)/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2 =[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得证
4
满意答案 好评率:100%
⧈ 向量函数思想总结
一.幂函数——教学目标:
1.知识技能
(1)了解幂函数的概念;
(2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用。
(3)学会研究函数图象和性质的一般方法。
2.过程与方法
类比研究指数函数、对数函数学习过程,掌握幂函数的图象和性质。
3.情感、态度、价值观
(1)进一步渗透数形结合与类比的思想方法;
(2)体会幂函数的变化规律及蕴含其中的对称性,感受数学美。
二、幂函数——教学重难点:
1、重点:幂函数的概念和性质;
2、难点:函数指数的推广及性质的归纳。
三、幂函数——教学辅助工具:
PPT课件,几何画板。
四、幂函数——教学过程:
(一)创设情景
前面我们学习了函数的定义,研究了函数的一般性质,并且研究了指数函数和对数函数。函数这个大家庭有很多成员,今天,我们利用学习指数函数、对数函数的方法,再来认识一位新成员。
1、如果正方形的边长为,那么正方形的面积是= ,是的函数。
2、如果正方体的边长为,那么正方体的体积是 = ,是的函数。
3、如果正方形场地的面积为,那么正方形的边长= ,是的函数。
4、如果某人s内骑车行进了1km,那么他骑车的平均速度= km/s,是的函数。
思考:上述函数解析式有什么共同特征?
答:(1)都是函数;
(2)均是以自变量为底的幂;
(3)指数均为常数;
(4)自变量前的系数为1。
(二)新课导入
1、幂函数的定义:
一般地, 叫做幂函数,其中是自变量,是常数。
2、幂函数与我们之前学过的哪种函数在形式上接近?
3、幂函数与指数函数有什么区别?
答:判断一个函数是幂函数还是指数函数的切入点是看未知数x是做底数还是做指数,若是做底数则是幂函数;若是做指数则是指数函数。
设计意图:引导学生分析掌握幂函数的结构,三要素,区分幂函数与指数函数的异同点。
(三)小试牛刀
1、下列函数中,哪几个函数是幂函数?
① ② ③
④ ⑤ ⑥
2、已知函数是幂函数,则实数的值等于_____.
3、已知幂函数的图象过点,则
(四)自主探究
1、请在同一坐标系内画出幂函数,,,,的图象。
2、观察图象,讨论归纳幂函数;;;;的性质。
定义域
值 域
奇偶性
单调性
定 点
(五)合作探究
归纳幂函数的性质:
(1)幂函数图象过定点 。
(2)函数、、是奇函数,函数是偶函数
(3)幂函数,在第 象限都有图象。我们就先来研究幂函数在第 象限上的性质,函数的奇偶性能够帮助我们完成其他象限的图象。
在区间上,函数、、和是增函数,函数是减函数。
推广:当>0时,函数在第一象限是增函数,当<0时,函数在第一象限是减函数.
(4)在第一象限,函数的图象向上与y轴无限接近,向右与x轴无限接近
设计意图:引导学生类比前面研究一般的函数、指数函数、对数函数等过程中的思想方法研究幂函数;让学生通过观察上述图象,自己尝试归纳五个幂函数的基本性质,然后完成表格;进而归纳幂函数的性质。
(六)反馈演练
例1、证明幂函数上是增函数
证:任取
=
=
因<0,>0
所以,即上是增函数.
例2、比较下列各组中两个值的大小:
(1)与 ;(2)与;(3)与
(4)与.
例3、已知幂函数在上是减函数,求m的取值.
例题的设计意图:
例题1复习函数单调性的证明步骤,例题2复习利用指数函数的图象与性质来比较大小的同时学会用幂函数的方法来比较大小,体会一题多解.例题3学会利用幂函数的性质来解题.
(七)总结提炼
1、谈谈五个基本幂函数的定义域与对应幂函数的奇偶性、单调性之间的关系?
2、幂函数与指数函数的不同点主要表现在哪些方面?
⧈ 向量函数思想总结
一、教材简析
1.教材的地位和作用:《实数与向量的积》这一章在高中阶段有着很重要的作用。有广泛的实际应用,在整个中学数学里起着承前启后的作用。并且是培养学生数学能力的良好题材。实数与向量的积是向量的重要组成部分,在前面学习了向量的加法和减法,掌握好实数与向量的积这一运算的关键在于明确这一运算的结果仍然是向量,要按大小和方向两个要素去理解及应用。
向量共线充要条件实际上是由实数与向量的积的定义得到的,利用它常可以解决三点共线和两直线平行等问题。能够在运算时达到运算灵活,方便快捷的目的,故一直受到重视.
同时,这节课的教学过程对进一步培养学生观察、分析、类比、化归的思想和归纳问题的能力具有重要意义。
2.教材的处理:结合教参与学生的学习能力,我将《实数与向量的积》安排了2节课。本节课是第一课时。因为在前面学习了向量的加法和减法。为了进一步体现化归思想在高中数学中的运用,我在这节课中也着重体现了化归思想的运用。
3、教学重点与难点:根据学生现状、及教学要求我确立本节课的教学重点为:理解实数与向量的积的定义及其运用。
本节课的难点定为:对向量共线的充要条件的理解
要突破这个难点,关键在于紧扣定义,讲清向量平行与直线平行的区别。
4、教学目标的分析
根据教学要求,教材的地位和作用,以及学生现有的知识水平和数学能力,我把本节课的教学目标确定为三个方面:
(1)知识教学目标:
使学生在掌握实数与向量的积的定义、运算律的基础上,理解向量共线的充要条件,并能用来解决一些实际问题。
(2)能力训练目标:
培养学生运用类比化归的方法去发现并解决问题的能力。使学生认识到化归思想在数学中的重要性。
(3)德育渗透目标:
使学生认识到事物之间的相互联系和辨证统一;增强学生的应用意识;提高学生的数学素质
二、教法与学法分析
现代教学论指出:“教学是师生的多边活动,在教师的‘反馈——控制’的同时,每个学生也都在进行着微观的‘反馈——控制’。”由于任何教学都必须通过学生自身的学习建构活动才有成效,故本节课采用“发现式教学法、类比分析法”来组织课堂教学。这堂课用化归的方法运用向量共线的充要条件是一种较好的学法。 在这节课中涉及到了数学中的一种思想方法,即类比思想。数学思想方法是数学的精髓,它蕴含于数学知识发生、发展和应用的过程中,正确地运用数学思想方法,能把数学知识和技能转化为分析问题和解决问题的能力,体现数学学科的特点,形成良好的数学素养。
我在讲解这部分知识时注意引导学生要充分认识到数学中的类比思想,并引导学生进行类比,充分体会到类比思想的精髓。
三、教学过程
第1环节、引入新课:实数与向量的积的定义
第2环节、知识运用:实数与向量的积的运算律。
第3环节、升华提高:理解并证明向量共线定理。
第4环节、性质的运用。我针对向量共线定理设计了两个例题,从正反两个方面体现了定理的实际运用,符合学生的认知过程。在讲解这些例题时着重体现向量共线充要条件的运用。在性质的运用过程中要特别强调向量平行与直线平行的区别。在例题后我还预留了习题时间,用以巩固本节课所学。
第5环节、小结:
第6环节、布置作业:
⧈ 向量函数思想总结
【目标】
通过学习、训练,使学生理解和掌握函数思想和数形结合思想并能运用函数思想和数形结合思想解决问题.
【重、难点】
使学生能灵活运用函数思想和数形结合思想解决问题.
【教学过程】
一、题型归析
函数思想是一种对应思想,它是用运动变化的观点来观察问题、分析问题,并借助于函数关系思考解决问题的一种数学思想.数形结合思想就是把数量与图形结合起来进行分析、研究、解决问题的思维策略.在学习中,充分利用问题中所提供的数与形,不失时机地把数的精确性与形的直观性结合起来,(即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性.)可收到意想不到的效果.
二、例题解析
【例1】某商人将进货单价为8元的商品,按每件10元出售时,每天可销售100件,现在他想采取提高售价的办法来增加利润.已知这种商品每提价1元(每件)日销售量就减少10件,请问他的想法能否实现,他把价格定为多少元时,才能使每天获得的利润最大?最大利润是多少?若不能,请说明理由.
【分析】本题是一道实际应用题,解答时,需先将实际问题转化为函数问题来解决.不妨设此人每天获得的利润为y,售价定为x元,则y=(x-8)〔100-10(x-10)〕= -10(x-14)2+360,由二次函数的性质知,当他把价格定为14元时,才能使每天获得的利润最大,最大利润是360元.
【思路点拨】把此题转化为函数问题后,我们发现求最大利润问题就变成了求二次函数的最值问题,解决起来就简单了.
【例2】某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图1,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:
(1)请提供四条信息;(2)不必求函数的解析.
【分析】本题是一个图像题,仔细观察图像,我们可以得出一系列的信息如:(1)2月份每千克销售价是3.5元;7月份每千克销售价是0.5元;(3)l月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9月、4月与10 月、3月与11 月,2月与12 月的销售价分别相同.
【思路点拨】本题很好的体现了数形结合思想,解答此题我们正是充分利用问题中所提供的数与形,由直观的形得出了精确的数,从而很好的解决了问题.
【例3】(09 包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量 (件)与销售单价 (元)符合一次函数 ,且 时, ; 时, . (1)求一次函数 的表达式;
(2)若该商场获得利润为 元,试写出利润 与销售单价 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价 的范围.
【分析】(1)容易求的一次函数的解析式为:y= -x+120
(2)W=(x-60)?(-x+120)= -x2+180x-7200= -(x-90)2+900,要结合图像回答,因为抛物线开口向下,所以当x<90时,W随x的增大而增大.而60≤x≤87,所以当x =87时,商场获利润最大.
(3)由W=-x2+180x-7200,W=500时得,-x2+180x-7200=500,解得x1=70,x2=110. 由图像知,要使商场获得的利润不低于500元,销售单价应在70元到110元之间.
【思路点拨】本题是一道一次函数和二次函数相结合的题目,对于(2)问转化成二次函数问题之后,要充分利用抛物线得出问题的答案,对于(3)问也要借助图像利用数形结合的思想解答.
【例4】已知如图2,点A在y轴的正半轴上,点B在x轴的负半轴上,点C在x轴的正半轴上,AC=5,AB= ,cos∠ACB= ,求过A,B,C三点的抛物线的解析式.
【分析】要求抛物线解析式,需先求A、B、C三点的坐标,由图知,求坐标要先解直角三角形,求出OA、OC、OB的'长度,在直角三角形AOC中,由AC=5,cos∠ACB= 求得OA=4,OC=3. 在直角三角形AOB中求得OB=1,结合图形和已知即可写出A、B、C三点的坐标.
【思路点拨】本题要先结合图形求出三条线段的长度,在根据线段长度得出点的坐标时,一定要结合图形,根据点所在的坐标轴或象限写出点的坐标.解答本题也是利用了数形结合思想,正是把形的直观和数的精确有机的结合起来. www.
三、诊断自测
1.若直线y=mx+4,x=l,x=4和x轴围成的直角梯形的面积是7,则m的值是( )
A.-12 B.- 23 C.-32 D.-2
2.某人从A地向B地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,每加 1分钟加收 1元,则表示电话费y(元)与通话时间(分)之间的关系的图象如图 3所示,正确的是( )
3.二次函数 的图象如图6所示,则下列关系式不正确的是
A. <0 B. >0 C. >0 D. >0
4.如图7,在△ABC中,∠C=90o, AB的垂直平分线交AC于D,垂足为E,若∠A=30o,DE=4?,求∠DBC的度数和CD的长.
⧈ 向量函数思想总结
教学目标:
(i)知识目标:
(1)掌握平面向量数量积的概念、几何意义、性质、运算律及坐标表示.
(2) 平面向量数量积的应用.
(ii)能力目标:
(1) 培养学生应用平面向量积解决相关问题的能力.
(2) 正确运用向量运算律进行推理、运算.
教学重点: 掌握平面向量的数量积及其几何意义.
用数量积求夹角、距离及平面向量数量积的坐标运算.
教学难点: 平面向量数量积的综合应用.
?教学过程:
一、知识梳理
平面向量数量积(内积)的定义:已知两个非零向量 与 ,它们的夹角是θ,则数量|
⧈ 向量函数思想总结
(一)IF函数说明IF函数用于执行真假值判断后,根据逻辑测试的真假值返回不同的结果,因此 If函数也称之为条件函数,它的应用很广泛,可以使用函数 IF 对数值和公式进行条件检测。 它的语法为IF(logical_test,value_if_true,value_if_false)。其中Logical_test表示计算结果为 TRUE 或 FALSE 的任意值或表达式。本参数可使用任何比较运算符。 Value_if_true显示在logical_test 为 TRUE 时返回的值,Value_if_true 也可以是其他公式。Value_if_false logical_test 为 FALSE 时返回的值。Value_if_false 也可以是其他公式。 简言之,如果第一个参数logical_test返回的结果为真的话,则执行第二个参数Value_if_true的结果,否则执行第三个参数 Value_if_false的结果。IF 函数可以嵌套七层,用 value_if_false 及 value_if_true 参数可以构造复杂的检测条件。 Excel 还提供了可根据某一条件来分析数据的其他函数。例如,如果要计算单元格区域中某个文本串或数字出现的次数,则可使用 COUNTIF 工作表函数。如果要根据单元格区域中的某一文本串或数字求和,则可使用 SUMIF 工作表函数。
以图中所示的人事状况分析表为例,由于各部门关于人员的组成情况的数据尚未填写,在总计栏(以单元格G5为例)公式为:
我们看到计算为0的结果。如果这样的表格打印出来就页面的美观来看显示是不令人满意的。是否有办法去掉总计栏中的0呢?你可能会说,不 写公式不就行了。当然这是一个办法,但是,如果我们利用了IF函数的话,也可以在写公式的情况下,同样不显示这些0。如何实现呢?只需将总计栏中的公式 (仅以单元格G5为例)改写成:
通俗的解释就是:如果SUM(C5:F5)不等于零,则在单元格中显示SUM(C5:F5)的结果,否则显示字符串。
几点说明:
(1) SUM(C5:F5)不等于零的正规写法是SUM(C5:F5)0,在EXCEL中可以省略0; (2) “”表示字符串的内容为空,因此执行的结果是在单元格中不显示任何字符,
如果对上述例子有了很好的理解后,我们就很容易将IF函数应用到更广泛的领域。比如,在成绩表中根据不同的成绩区分合格与不合格。现在我们就以某班级的英语成绩为例具体说明用法。
某班级的成绩如图6所示,为了做出最终的综合评定,我们设定按照平均分判断该学生成绩是否合格的规则。如果各科平均分超过60分则认为是合格的,否则记作不合格。
根据这一规则,我们在综合评定中写公式(以单元格B12为例):
语法解释为,如果单元格B11的值大于60,则执行第二个参数即在单元格B12中显示合格字样,否则执行第三个参数即在单元格B12中显示不合格字样。
在综合评定栏中可以看到由于C列的同学各科平均分为54分,综合评定为不合格。其余均为合格。
在上述的例子中,我们只是将成绩简单区分为合格与不合格,在实际应用中,成绩通常是有多个等级的,比如优、良、中、及格、不及格等。有办法一次 性区分吗?可以使用多层嵌套的办法来实现。仍以上例为例,我们设定综合评定的规则为当各科平均分超过90时,评定为优秀。如图7所示。
说明:为了解释起来比较方便,我们在这里仅做两重嵌套的示例,您可以按照实际情况进行更多重的嵌套,但请注意Excel的IF函数最多允许七重嵌套。
根据这一规则,我们在综合评定中写公式(以单元格F12为例):
=IF(F11>60,IF(AND(F11>90),“优秀”,“合格”),“不合格”)
语法解释为,如果单元格F11的值大于60,则执行第二个参数,在这里为嵌套函数,继续判断单元格F11的值是否大于90(为了让大家体会一下 AND函数的应用,写成AND(F11>90),实际上可以仅写 F11>90),如果满足在单元格F12中显示优秀字样,不满足显示合格字样,如果F11的值以上条件都不满足,则执行第三个参数即在单元格F12 中显示不合格字样。
在综合评定栏中可以看到由于F列的同学各科平均分为92分,综合评定为优秀
⧈ 向量函数思想总结
在计算机编程中,函数是一种非常重要的概念。函数以其高效、模块化和可重用的特性,广泛应用于各种编程语言中。通过函数的使用,我们可以将多个代码块封装在一起并命名,以便在程序中的多个位置重复使用。在此篇文章中,我将分享关于函数的一些心得体会。
函数的定义和调用是编程中的基本操作。定义函数时,我们需要指定函数的名称、输入参数和返回值类型。在函数体内,我们可以编写具体的操作代码。函数的调用则是使用函数名称和相应的参数,实际触发函数体内的代码执行。通过这种方式,我们可以将代码模块化、组织化,提高代码的可读性和可维护性。
函数有助于提高代码的复用性。在编写程序时,我们常常会遇到某一段代码需要在多个位置使用的情况。如果没有函数的概念,我们可能需要在每个需要使用该段代码的地方都进行复制粘贴。而使用函数后,我们只需要将这段代码封装在函数内,并在需要的地方调用函数即可。这样一来,我们只需要编写一次代码,就可以在多个地方重复使用,大大提高了代码的复用性。
函数的使用还有助于增强程序的可读性。当一个程序过于庞大复杂时,我们往往会面临代码阅读和理解的困难。而通过将复杂的操作逻辑分解为多个函数,我们可以将程序的不同功能拆分成若干小模块,并为每个模块起一个有意义的名称。这样一来,不仅有助于减少代码的长度,还使得代码更加清晰易懂。函数还可以充当注释的作用,我们可以通过函数名称来推测函数的功能,从而快速理解代码的设计意图。
函数也有助于提高代码的可维护性。当程序出现问题时,我们需要快速定位并修复错误。如果所有代码都杂乱无章地写在一起,那么在出现问题时,我们很难快速找到问题所在。而如果我们通过函数将代码模块化,将不同功能分解为若干个函数,那么当出现问题时,我们可以迅速定位到相应的函数,仅对该函数进行调试和修复,从而提高了代码的可维护性。
函数还有利于提高代码的重用性。通过函数的使用,我们可以将一些常用的操作逻辑封装成函数,并将其放在库中供其他人或其他项目使用。这样一来,我们不仅可以避免重复编写相同的代码,还可以通过共享函数库来提高开发效率。同时,函数的重用还有助于确保代码的一致性,当函数的实现被修改时,所有使用该函数的地方都会受到影响,这样可以降低出现同一个错误的可能性。
函数在计算机编程中扮演着非常重要的角色。通过函数,我们可以将代码模块化、组织化,并提供高效、可读、可维护和可重用的代码。合理利用函数可以提高程序的开发效率和质量,减少程序的冗余和错误。函数的学习和运用是每一个程序员必备的基本技能。
⧈ 向量函数思想总结
各位评委、各位老师,大家好。今天,我说课的内容是:人教A版必修四第二章第三节《平面向量的基本定理及坐标表示》第一课时,下面,我将从教材分析、教法分析、学法指导、教学过程以及设计说明五个方面来阐述一下我对本节课的设计。
一、教材分析:
1、教材的地位和作用:
向量是沟通代数、几何与三角函数x的一种工具,有着极其丰富的实际背景。本课时内容包含“平面向量基本定理”和“平面向量的正交分解及坐标表示”.此前的教学内容由实际问题引入向量概念,研究了向量的线性运算,集中反映了向量的几何特征,而本课时之后的内容主要是研究向量的坐标运算,更多的是向量的代数形态。平面向量基本定理是坐标表示的基础,坐标表示使平面中的向量与它的坐标建立起了一一对应的关系,这为通过“数”的运算处理“形”的问题搭起了桥梁,也决定了本课内容在向量知识体系中的核心地位.
2、教学目标:根据教学内容的特点,依据新课程标准的具体要求,我从以下三个方面来确定本节课的教学目标。
(1)知识与技能
了解向量夹角的概念,了解平面向量基本定理及其意义,掌握平面向量的正交 分解及其坐标表示。
(2)过程与方法
通过对平面向量基本定理的探究,以及平面向量坐标建立的过程,让学生体验数学定理的产生、形成过程,体验由一般到特殊、类比以及数形结合的数学思想,从而实现向量的“量化”表示。
(3)情感、态度与价值观
引导学生从生活中挖掘数学内容,培养学生的发现意识和应用意识,提高学习数学的兴趣,感受数学的魅力。
3、教学重点和难点:根据教材特点及教学目标的要求,我将教学重点确定为———平面向量基本定理的探究,以及平面向量的坐标表示
教学难点:对平面向量基本定理的理解及其应用
二、教法分析:
针对本节课的教学目标和学生的实际情况,根据“先学后教,以学定教”原则,本节课采用由“自学—探究—点拨—建构—拓展”五个环节构成的诱导式学案导学方法。
三、学法指导
教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。由于学生已经掌握了向量的概念和简单的线性运算,并且对向量的物理背景有初步的了解,我引导学生采用问题探究式学法。让学生借助学案,在教师创设的情境下,根据已有的知识和经验,主动探索,积极交流,从而建立新的认知结构。
四、重点说明本节课的教学过程:本节课共设计了五个环节:发放学案,依案自学;分组探究 ,信息反馈;精讲点拨,解难释疑 ;归纳总结,建构网络 ;当堂达标,迁移拓展 。
1、发放学案,依案自学
学习并非学生对教师授予知识的被动接受,而是学习者以自身已有的知识和经验为基础的主动建构。根据这一理念,我在课前下发“导学学案”,让学生以学案为依据,以学习目标、学习重点难点为主攻方向,主动查阅教材、工具书,思考问题,分析解决问题,在尝试中获取知识,发展能力。这是我编制学案的纲要。
经过学生的自学,在课堂上,我采用提问的方式,让学生对知识点进行简单概述,并阐述自己的学习方法和体会。其中,向量的夹角概念,学生基本上能独立解决,我会引导学生归纳出求两个向量夹角的要点:(1)两个向量要共起点,(2)两个向量的正方向所成的角。然后,通过学案上的练习题目1,检查学生的掌握程度。对本节课的重点和难点:平面向量基本定理的探究及坐标表示,我准备通过分组探究,精讲点拨,归纳总结三个方面来突破。
2、分组探究 ,信息反馈
这一环节,我先把学生分组,让其对定理及坐标表示,进行讨论、探究、交流,先组内互相启发,消化个体疑点,然后以组为单位提出疑问。如果某个问题,某个组已经解决,其它组仍是疑点,我让已解决问题的小组做一次"教师",面向全体学生讲解,教师可以适当补充点拨,这也可以说是讨论的继续。对于难度较大的倾向性问题,我准备
3、精讲点拨,解难释疑
本节课的目的是要帮助学生建立向量的坐标.要求先运用已有的知识去研究平面向量的基本定理,然后以这个定理为基础建立向量的坐标。对于定理的探究,有些学生只是从形式上加以记忆,缺乏对问题本质的理解,为了帮助学生改进学习方法,提升数学能力,我先提问学生如何把平面上任一向量分解成两个不共线向量的线性组合,学生会通过作图来说明这一问题。我们要强调的是,这里的向量是自由向量,其起点是可以移动的,将三个向量的起点放在一起可便于研究问题.类比物理上力的分解,利用平行四边形法则,我们把向量 分解成 ,根据向量共线定理 ,存在一对实数λ1,λ2 ,使 , 从而 =λ1 +λ2 ,教师再引导学生自主归纳,从而得出平面向量基本定理。为了加深对定理的理解,我设计了如下的几个问题,学生思考回答后,教师再利用几何画板作进一步的演示。当 , 共线时,与它们不共线的向量 不能用 , 当线性表示,所以共线向量不能作为基底;当不共线向量 , ,任意 确定后,λ1,λ2是唯一确定的;我们改变向量 的大小和方向,发现 仍然可以用 , 线性表示,说明了任意向量 能分解成两个不共线向量的线性组合;改变基底 , 的大小和方向,保持向量 不变,刚才的结论仍然成立,说明了同一个向量 能用不同的基底线性表示,由此说明基底不唯一,具有可选择性。
对于向量的坐标表示,我先用火箭速度的分解引入正交分解,然后提问:根据平面向量基本定理,基底是可以选择的,为了研究的方便,我们应该选取什么样的基底呢?引导学生由一般到特殊,选择平面直角坐标系中 轴和 轴上,且方向与轴的正方向同向的单位向量 做基底,那么根据刚刚得出的定理,任一向量 =x +y ,由于x,y是唯一的,于是存在数对(x,y)与向量a一一对应,从而得到平面向量的坐标表示。需要说明的两点是:第一,向量的坐标表示与其分解形式是等价的,可以互相转化。第二点说明:求向量坐标的关键是构造平行四边形,确定实数x、y。学生在理解起点不在坐标原点的向量的坐标表示时会出现障碍,其原因是在直角坐标系中点和点的坐标是一一对应的,到了向量时,向量的坐标只是和从原点出发的向量一一对应,必须使学生在这种特定的场合中明白:要求点 的坐标就是要求向量 的坐标.只要结合向量相等的条件学生应该容易克服这一难点。随后,通过学案上的练习2,让学生巩固所学知识。
4、第四个环节,归纳总结,建构网络
建构主义教学理论认为,知识是主体在与情境的交互作用中、在解决问题的过程中能动地构建起来的,学生应在教师指导下自主归纳出新旧知识点之间的内在联系,构建知识网络,从而培养学生的分析能力和综合能力。为此,我设计了如下的问题:
通过本节课的学习,你收获了什么?……
在学生回答的过程中,我及时反馈,评价学生课堂表现,起导向作用。
学生完成个人新知建构之后,为了帮助学生检验自己的学习过程,我设计了
5、第五个环节,当堂达标,迁移拓展
本部分检测题,紧扣目标,当堂训练,而为了尊重学生的'个体差异,满足多样化学习的需要,我又分必做和选做两部分来布置题目,允许学生根据个人情况来完成。
五、我说课的最后一部分是教学设计说明:
1、贯彻了学生主体、教师主导的原则
“学案导学”要求学生主动试一试,并给予学生充分自由思考的时间。学生在尝试中遇到问题就会主动地去自学课本和接受教师的指导。这样,学习就变成了学生自身的需要,使他们产生了“我要学”的愿望,在这种动机支配下学生就会依靠自己的力量积极主动地去学习。
教师通过启发、激励,诱导学生全员、全过程参与教学过程,体现教师的主导作用。
2、培养了自主探索,合作交流的能力
新的课程理念,要求学生的学习不仅仅是在理解基础上掌握和记忆知识,还要学习探索和解决问题的方法和途径。
本节课采用诱导式教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,掌握数学知识、形成数学能力,培养探索精神和团队意识。
我相信,通过本节课的学习,学生获取的将不仅仅是知识,获取知识的手段、途径和方法,以及勇于探索、合作交流的能力,才是他们最大的收获。
⧈ 向量函数思想总结
说课内容:普通高中课程标准实验教科书(人教A版)《数学必修4》第二章第四节“平面向量的数量积”的第一课时---平面向量数量积的物理背景及其含义。
下面,我从背景分析、教学目标设计、课堂结构设计、教学过程设计、教学媒体设计及教学评价设计六个方面对本节课的思考进行说明。
一、 背景分析
1、学习任务分析
平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。
本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。
2、学生情况分析
学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。这为学生学习数量积做了很好的铺垫,使学生倍感亲切。但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。因而本节课教学的难点数量积的概念。
二、 教学目标设计
《普通高中数学课程标准(实验)》 对本节课的要求有以下三条:
(1)通过物理中“功”等事例,理解平面向量数量积的含义及其物理意义。
(2)体会平面向量的数量积与向量投影的关系。
(3)能用运数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。
从以上的背景分析可以看出,数量积的概念既是本节课的重点,也是难点。为了突破这一难点,首先无论是在概念的引入还是应用过程中,物理中“功”的实例都发挥了重要作用。其次,作为数量积概念延伸的性质和运算律,不仅能够使学生更加全面深刻地理解概念,同时也是进行相关计算和判断的理论依据。最后,无论是数量积的性质还是运算律,都希望学生在类比的基础上,通过主动探究来发现,因而对培养学生的抽象概括能力、推理论证能力和类比思想都无疑是很好的载体。
综上所述,结合“课标”要求和学生实际,我将本节课的教学目标定为:
1、了解平面向量数量积的物理背景,理解数量积的含义及其物理意义;
2、体会平面向量的数量积与向量投影的关系,掌握数量积的性质和运算律,
并能运用性质和运算律进行相关的运算和判断;
3、体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力。
三、课堂结构设计
本节课从总体上讲是一节概念教学,依据数学课程改革应关注知识的发生和发展过程的理念,结合本节课的知识的逻辑关系,我按照以下顺序安排本节课的教学:
即先从数学和物理两个角度创设问题情景,通过归纳和抽象得到数量积的概念,在此基础上研究数量积的性质和运算律,使学生进一步加深对概念的理解,然后通过例题和练习使学生巩固概念,加深印象,最后通过课堂小结提高学生认识,形成知识体系。
四、 教学媒体设计
和“大纲”教材相比,“课标”教材在本节课的内容安排上,虽然将向量的夹角在“平面向量基本定理”一节提前做了介绍,但却将原来分两节课完成的内容合并成一节,相比较而言本节课的教学任务加重了许多。为了保证教学任务的完成,顺利实现本节课的教学目标,考虑到本节课的实际特点,在教学媒体的使用上,我的设想主要有以下两点:
1、制作高效实用的电脑多媒体课件,主要作用是改变相关内容的呈现方式,以此来节约课时,增加课堂容量。
2、设计科学合理的板书(见下),一方面使学生加深对主要知识的印象,另一方面使学生清楚本节内容知识间的逻辑关系,形成知识网络。
平面向量数量积的物理背景及其含义
一、 数量积的概念 二、数量积的性质 四、应用与提高
1、 概念: 例1:
2、 概念强调 (1)记法 例2:
(2)“规定” 三、数量积的运算律 例3:
3、几何意义:
4、物理意义:
五、 教学过程设计
课标指出:数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下六个活动:
活动一:创设问题情景,激发学习兴趣
正如教材主编寄语所言,数学是自然的,而不是强加于人的。平面向量的数量积这一重要概念,和向量的线性运算一样,也有其数学背景和物理背景,为了体现这一点,我设计以下几个问题:
问题1:我们已经研究了向量的哪些运算?这些运算的结果是什么?
问题2:我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?
期望学生回答:物理模型→概念→性质→运算律→应用
问题3:如图所示,一物体在力F的作用下产生位移S,
(1)力F所做的功W= 。
(2)请同学们分析这个公式的特点:
W(功)是 量,
F(力)是 量,
S(位移)是 量,
α是 。
问题1的设计意图在于使学生了解数量积的数学背景,让学生明白本节课所要研究的数量积与向量的加法、减法及数乘一样,都是向量的运算,但与向量的线性运算相比,数量积运算又有其特殊性,那就是其结果发生了本质的变化。
问题2的设计意图在于使学生在与向量加法类比的基础上明了本节课的研究方法和顺序,为教学活动指明方向。
问题3的设计意图在于使学生了解数量积的物理背景,让学生知道,我们研究数量积绝不仅仅是为了数学自身的完善,而是有其客观背景和现实意义的,从而产生了进一步研究这种新运算的愿望。同时,也为抽象数量积的概念做好铺垫。
活动二:探究数量积的概念
1、概念的抽象
在分析“功”的计算公式的基础上提出问题4
问题4:你能用文字语言来表述功的计算公式吗?如果我们将公式中的力与位移推广到一般向量,其结果又该如何表述?
学生通过思考不难回答:功是力与位移的大小及其夹角余弦的乘积;两个向量的大小及其夹角余弦的乘积。这样,学生事实上已经得到数量积概念的文字表述了,在此基础上,我进一步明晰数量积的概念。
2、概念的明晰
已知两个非零向量
与
,它们的夹角为
,我们把数量 ︱
︱·︱
︱cos
叫做
与
的数量积(或内积),记作:
·
,即:
·
= ︱
︱·︱
︱cos
在强调记法和“规定”后 ,为了让学生进一步认识这一概念,提出问题5
问题5:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?并完成下表:
角
的范围0°≤
=90°0°
≤180°
·
的符号
通过此环节不仅使学生认识到数量积的结果与线性运算的结果有着本质的不同,而且认识到向量的夹角是决定数量积结果的重要因素,为下面更好地理解数量积的性质和运算律做好铺垫。
3、探究数量积的几何意义
这个问题教材是这样安排的:在给出向量数量积的概念后,只介绍了向量投影的定义,直到讲完例1后,为了证明运算律的第三条才直接以结论的形式呈现给学生,我觉得这样安排似乎不太自然,还不如在给出向量投影的概念后,直接由学生自己归纳得出,所以做了调整。为此,我首先给出给出向量投影的概念,然后提出问题5。
如图,我们把│
│cos
(│
│cos
)叫做向量
在
方向上(
在
方向上)的投影,记做:OB1=│
│cos
问题6:数量积的几何意义是什么?
这样做不仅让学生从“形”的角度重新认识数量积的概念,从中体会数量积与向量投影的关系,同时也更符合知识的连贯性,而且也节约了课时。
4、研究数量积的物理意义
数量积的概念是由物理中功的概念引出的,学习了数量积的概念后,学生就会明白功的数学本质就是力与位移的数量积。为此,我设计以下问题 一方面使学生尝试计算数量积,另一方面使学生理解数量积的物理意义,同时也为数量积的性质埋下伏笔。
问题7:
(1) 请同学们用一句话来概括功的数学本质:功是力与位移的数量积 。
(2)尝试练习:一物体质量是10千克,分别做以下运动:
①、在水平面上位移为10米;
②、竖直下降10米;
③、竖直向上提升10米;
④、沿倾角为30度的斜面向上运动10米;
分别求重力做的功。
活动三:探究数量积的运算性质
1、性质的发现
教材中关于数量积的三条性质是以探究的形式出现的,为了很好地完成这一探究活动,在完成上述练习后,我不失时机地提出问题8:
(1)将尝试练习中的① ② ③的结论推广到一般向量,你能得到哪些结论?
(2)比较︱
·
︱与︱
︱×︱
︱的大小,你有什么结论?
在学生讨论交流的基础上,教师进一步明晰数量积的性质,然后再由学生利用数量积的定义给予证明,完成探究活动。
2、明晰数量积的性质
3、性质的证明
这样设计体现了教师只是教学活动的引领者,而学生才是学习活动的主体,让学生成为学习的研究者,不断地体验到成功的喜悦,激发学生参与学习活动的热情,不仅使学生获得了知识,更培养了学生由特殊到一般的思维品质。
活动四:探究数量积的运算律
1、运算律的发现
关于运算律,教材仍然是以探究的形式出现,为此,首先提出问题9
问题9:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也适用?
通过此问题主要是想使学生在类比的基础上,猜测提出数量积的运算律。
学生可能会提出以下猜测: ①
·
=
·
②(
·
)
=
(
·
) ③(
+
)·
=
·
+
·
猜测①的正确性是显而易见的。
关于猜测②的正确性,我提示学生思考下面的问题:
猜测②的左右两边的结果各是什么?它们一定相等吗?
学生通过讨论不难发现,猜测②是不正确的'。
这时教师在肯定猜测③的基础上明晰数量积的运算律:
2、明晰数量积的运算律
3、证明运算律
学生独立证明运算律(2)
我把运算运算律(2)的证明交给学生完成,在证明时,学生可能只考虑到λ>0的情况,为了帮助学生完善证明,提出以下问题:
当λ
与λ
,
与λ
的方向 的关系如何?此时,向量λ
与
及
与λ
的夹角与向量
与
的夹角相等吗?
师生共同证明运算律(3)
运算律(3)的证明对学生来说是比较困难的,为了节约课时,这个证明由师生共同完成,我想这也是教材的本意。
在这个环节中,我仍然是首先为学生创设情景,让学生在类比的基础上进行猜想归纳,然后教师明晰结论,最后再完成证明,这样做不仅培养了学生推理论证的能力,同时也增强了学生类比创新的意识,将知识的获得和能力的培养有机的结合在一起。
活动五:应用与提高
例1、(师生共同完成)已知︱
︱=6,︱
︱=4,
与
的夹角为60°,求
(
+2
)·(
-3
),并思考此运算过程类似于哪种运算?
例2、(学生独立完成)对任意向量
,b是否有以下结论:
(1)(
+
)2=
2+2
·
+
2
(2)(
+
)·(
-
)=
2—
2
例3、(师生共同完成)已知︱
︱=3,︱
︱=4, 且
与
不共线,k为何值时,向量
+k
与
-k
互相垂直?并思考:通过本题你有什么收获?
本节教材共安排了四道例题,我根据学生实际选择了其中的三道,并对例1和例3增加了题后反思。例1是数量积的性质和运算律的综合应用,教学时,我重点从对运算原理的分析和运算过程的规范书写两个方面加强示范。完成计算后,进一步提出问题:此运算过程类似于哪种运算?目的是想让学生在类比多项式乘法的基础上自己猜测提出例2给出的两个公式,再由学生独立完成证明,一方面这并不困难,另一方面培养了学生通过类比这一思维模式达到创新的目的。例3的主要作用是,在继续巩固性质和运算律的同时,教给学生如何利用数量积来判断两个向量的垂直,是平面向量数量积的基本应用之一,教学时重点给学生分析数与形的转化原理。
为了使学生更好的理解数量积的含义,熟练掌握性质及运算律,并能够应用数量积解决有关问题,再安排如下练习:
1、 下列两个命题正确吗?为什么?
①、若
≠0,则对任一非零向量
,有
·
≠0.
②、若
≠0,
·
=
·
,则
=
.
2、已知△ABC中,
=
,
=
,当
·
·
=0时,试判断△ABC的形状。
安排练习1的主要目的是,使学生在与实数乘法比较的基础上全面认识数量积这一重要运算,
通过练习2使学生学会用数量积表示两个向量的夹角,进一步感受数量积的应用价值。
活动六:小结提升与作业布置
1、本节课我们学习的主要内容是什么?
2、平面向量数量积的两个基本应用是什么?
3、我们是按照怎样的思维模式进行概念的归纳和性质的探究?在运算律的探究过程中,渗透了哪些数学思想?
4、类比向量的线性运算,我们还应该怎样研究数量积?
通过上述问题,使学生不仅对本节课的知识、技能及方法有了更加全面深刻的认识,同时也为下
一节做好铺垫,继续激发学生的求知欲。
布置作业:
1、课本P121习题2.4A组1、2、3。
2、拓展与提高:
已知
与
都是非零向量,且
+3
与7
-5
垂直,
-4
与 7
-2
垂直求
与
的夹角。
在这个环节中,我首先考虑检测全体学生是否都达到了“课标”的基本要求,因此安排了一组教材中的习题,目的是让所有的学生继续加深对数量积概念的理解和应用,为后续学习打好基础。其次,为了能让不同的学生在数学领域得到不同的发展,我又安排了一道有一定难度的问题供学有余力的同学选做。
六、教学评价设计
评价方式的转变是新课程改革的一大亮点,课标指出:相对于结果,过程更能反映每个学生的发展变化,体现出学生成长的历程。因此,数学学习的评价既要重视结果,也要重视过程。结合“课标”对数学学习的评价建议,对本节课的教学我主要通过以下几种方式进行:
1、 通过与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定
性的评价。
2、在学生讨论、交流、协作时,教师通过观察,就个别或整体参与活动的态度和表现做出评价,以此来调动学生参与活动的积极性。
3、 通过练习来检验学生学习的效果,并在讲评中,肯定优点,指出不足。
4、 通过作业,反馈信息,再次对本节课做出评价,以便查漏补缺。
⧈ 向量函数思想总结
今天在高一幻师(1)班,听了倪**上的一节《7.1.2向量的加法》的数学公开课,听完感想颇多。下面就我个人谈谈对倪玲玲老师这节课的看法不成熟看法,如有不妥的地方请大家多多谅解。
一、从教学基本功来看,倪老师虽然是一个教龄未满三年的新教师,但她的教学基本功是非常扎实的。教学中,倪教师的语言生动准确,板书工整规范,课堂调控能力强,教学富有条理,PPT课件做的漂亮,演示过程有条有理。
二、从教材处理来看,倪老师对于教材的处理还欠缺火候,不敢大胆尝试教学改革,这可能是新教师的通病。我们中职的学生数学基础普遍差,所以我们教师备教案时要从学生的学情来考虑,最好把学生当做什么都不懂的学生来教。事实上,我们中职学生没有几个数学基础好的,很多学生会因为一节或两节课听不懂数学课,而丧失了对数学学习的兴趣。倪老师的这节课,从引入看,设置的情境问题起点比较高,问的是“船从码头出发,先向东行驶20公里,再向北行驶20公里,请问船的位置在哪?”。这个问题跟后面的讲解的例题内容大致相同,结果倪老师一提问,所有学生都蒙住了,课堂一下沉闷下来,还好倪老师教学机智比较好,马上转移话题打破冷场,从另一个角度作引导。在讲解向量加法的三角形法则时,倪老师一再强调三角形加法法则要注意“首尾相接首尾连”,但还是没有把向量相加的方向指向讲清楚,确切的说“两个向量连接相加,它的方向由向量最初的起点指向向量最后的终点”。另外,在讲解两个向量求和作图之前,最好能把向量相等的定义事先复习下,这样可以这个内容的学习作铺垫。
三、从课堂的动态生成来看,这节课的师生互动性不强,课堂问题形式单一。课堂问题大都采用教师提问,学生群答形式,不利于开发学生学习的潜力与发觉学生学习中存在哪些问题。如果课堂中,能穿插个别提问或其它形式的教学方式,可能对活跃课堂氛围会更好,课堂教学可能会更有效。
四、从教学评价机制来看,这节课还缺少对学生的评价性语言。对学生来说,教师的一个中肯的评价,都是对学生的鼓励。现代的教学要求我们,每上一节课都要让不同层次的'学生都能学有所得,体验成功的喜悦。对于这方面,我们可能都不够重视,今后要多改观。
⧈ 向量函数思想总结
高中数学平面向量知识点归纳和测试题
必修四 第二章平面向量
1.在△ABC中,AB?c,AC?b.若点D满足BD?2DC,则AD?( ) A.
21b?c 33
B.c?
5
32b 3
C.
21b?c 33
D.b?
1
32c 3
2.在平行四边形ABCD中,AC为一条对角线,若AB?(2,4),AC?(1,3),则BD?( ) A. (-2,-4)
B.(-3,-5) C.(3,5)
D.(2,4)
3设D、E、F分别是△ABC的三边BC、CA、AB上的点,且DC?2BD,CE?2EA,AF?2FB,则
AD?BE?CF与BC( )
A.反向平行
.同向平行
C.互相垂直
D.既不平行也不垂直
4.关于平面向量a,b,c.有下列三个命题:
,k),b?(?2,6),a∥b,则k??3. ①若ab=ac,则b?c.②若a?(1
③非零向量a和b满足|a|?|b|?|a?b|,则a与a?b的夹角为60. 其中真命题的序号为 .(写出所有真命题的序号)
?的值为 5.若过两点P1(-1,2),P2(5,6)的直线与x轴相交于点P,则点P分有向线段PP12所成的比
A -
1
3
B -
1 5
C
1 5
D
1 3
( )
D.2
( )
→→→
6.已知正方形ABCD的边长为1,AB=a,BC=b,AC=c,则a+b+c的模等于
A.0
B.22
2
7.已知|a|=5,|b|=3,且a・b=-12,则向量a在向量b上的投影等于
A.-4
B.4
12
C5
125
( )
8.若向量a=(1,1),b=(1,-1),c=(-1,2),则c等于
13A.-+22
13-b 22
31C.a-b 22
31D.-a
22
( )
9.与向量a=(13)的夹角为30°的单位向量是
13
A.(,或(1,3)
22
B.(
31
) C.(0,1) 22
D.(0,1)或
3122( )
11
10.设向量a=(1,0),b=(),则下列结论中正确的是
22
A.|a|=|b|
B.a・b=
2
2
C.a-b与b垂直 D.a∥b
11.已知三个力f1=(-2,-1),f2=(-3,2),f3=(4,-3)同时作用于某物
体上一点,为使物体保持平衡,现加上一个力f4,则f4等于 A.(-1,-2)
( ) D.(1,2)
B.(1,-2) C.(-1,2)
12.已知a,b是平面内两个互相垂直的单位向量,若向量c满足(a?c)?(b?c)?0,则c的最大值( )
A.1 B.2 C.2 D.
2
2
b?a・b= . 13.若向量a、b满足a?b?1,a与b的夹角为120°,则a・
14.如图,平面内有三个向量OA、、,其中OA与的夹角为120°,OA与的夹角为30°,且|OA|=||=1,||=2,若=λOA+μλ,μ∈R),则λ+μ的值为.
?aa?
c=a-bab?0a??b,则向量a与c的夹角为( ) 15.若向量与不共线,,且
ab??
A.0
B.
π
6
C.
π 3
D.
π 2
16.若函数y?f(x)的图象按向量a平移后,得到函数y?f(x?1)?2的图象,则向量a=( )
,?2) A.(?1,?2) B.(1,2) C.(?1,2) D.(1
3),a在b
上的投影为17.设a?(4,
,b在x轴上的投影为2,且|b|≤14,则b为( ) 2
C.??2?
14) A.(2,
B.?2,?
?
?2?? 7???2?7?
8) D.(2,
18.设两个向量a?(??2,?2?cos2?)和b??m?sin??,其中?,m,?为实数.若a?2b,则
?
?
m2
??
?
8] 的取值范围是( ) A.[-6,1] B.[4,
m
C.(-6,1] D.[-1,6]
19.直角坐标系xOy中,i,j分别是与x,y轴正方向同向的单位向量.在直角三角形ABC中,若
????
AB?2i?j,AC?3i?kj,则k的可能值个数是
A.1 B.2 C.3
D.4
→→
20.向量BA=(4,-3),向量BC=(2,-4),则△ABC的形状为
A.等腰非直角三角形 C.直角非等腰三角形
B.等边三角形
( )
D.等腰直角三角形
( )
21.若a=(λ,2),b=(-3,5),且a与b的夹角是钝角,则λ的`取值范围是
10
,+∞? A.??3?
10
? B.??3?
10
-∞, C.?3?
10
-∞, D.?3?
22.已知向量a=(2,-1),b=(-1,m),c=(-1,2),若(a+b)∥c,则m=________.
23.已知向量a和向量b的夹角为30°,|a|=2,|b|=,则向量a和向量b的数量积a・b=________. 24.已知非零向量a,b,若|a|=|b|=1,且a⊥b,又知(2a+3b)⊥(ka-4b),则实数k的值为________. 25.已知a=(1,2),b=(-2,3),且ka+b与a-kb垂直,则k=( ) (A) ?1?2(B)
?
?
?
?
?
?
2?1(C) 2?3(D) 3?2
课堂小测
1.在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点
F.若AC?a,BD?b,则AF?( )
A.
11a?b 42
B.
21
a?b 33
C.
11
a?b 24
D.a?
1
32b 3
2.已知O,A,B是平面上的三个点,直线AB上有一点C,满足2AC?CB?0,则OC?( ) A.2OA?OB
B.?OA?2OB
C.
21
OA?OB 33
D.?OA?
1
32
OB 3
?xπ??π?
?2?平移,则平移后所得图象的解析式为() 3.将y?2cos???的图象按向量a????36??4??xπ??xπ?
A.y?2cos????2 B.y?2cos????2
?34??34??xπ?
C.y?2cos????2
?312?
?xπ?
D.y?2cos????2
?312?
CD?4.在△ABC中,已知D是AB边上一点,若AD?2DB,
A.
1
CA??CB,则??( ) 3
2 3
B.
1 3
C.?
1 3
D.?
2 3
5.若向量a=(1,1),b=(2,5),c=(3,x),满足条件(8a-b)・c=30,则x等于
A.6
( )
B.5 C.4 D.3
6.已知a,b,c在同一平面内,且a=(1,2).
(1)若|c|=25,且c∥a,求c; (2)若|b|=
7.已知|a|=2,|b|=3,a与b的夹角为60°,c=5a+3b,d=3a+kb,当实数k为何值时:
(1)c∥d;(2)c⊥d.
8.在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1).
(1)求以线段AB、AC为邻边的平行四边形的两条对角线的长; →→→
(2)设实数t满足(AB-tOC)・OC=0,求t的值.
,且(a+2b)⊥(2a-b),求a与b的夹角. 2
→→→→→→→→→
9.已知向量OP1、OP2、OP3满足条件OP1+OP2+OP3=0,|OP1|=|OP2|=|OP3|=1.
求证:△P1P2P3是正三角形.
10.已知正方形ABCD,E、F分别是CD、AD的中点,BE、CF交于点P.求证:
(1)BE⊥CF;(2)AP=AB.
1
解7 由题意得a・b=|a||b|cos 60°=2×3×=3.
2
9
(1)当c∥d,c=λd,则5a+3b=λ(3a+kb). ∴3λ=5,且kλ=3,∴k5
29
(2)当c⊥d时,c・d=0,则(5a+3b)・(3a+kb)=0. ∴15a2+3kb2+(9+5k)a・b=0,∴k=-.
14→→→→→→
解8 (1)AB=(3,5),AC=(-1,1),求两条对角线的长即求|AB+AC|与|AB-AC|的大小. →→→→→→→→
由AB+AC=(2,6),得|AB+AC|=210, 由AB-AC=(4,4),得|AB-AC|=42. →→→→→→→(2)OC=(-2,-1), ∵(AB-tOC)・OC=AB・OC-tOC2, 11→→→→→→易求AB・OC=-11,OC2=5, ∴由(AB-tOC)・OC=0得t=-.
5
→→→→→→→→→
证明9 ∵OP1+OP2+OP3=0,∴OP1+OP2=-OP3,∴(OP1+OP2)2=(-OP3)2,
→→
1OP・OP1→2→2→→→2→→
∴|OP1|+|OP2|+2OP1・OP2=|OP3|, ∴OP1・OP2=-,cos∠P1OP2=,
22→→
|OP1|・|OP2|→→→
∴∠P1OP2=120°.∴|P1P2|=|OP2-OP1|=
→→
?OP2-OP1?2=
→→→→OP12+OP22-2OP1・OP2=3.
→→
同理可得|P2P3|=|P3P1|=故△P1P2P3是等边三角形.
证明10 如图建立直角坐标系xOy,其中A为原点,不妨设AB=2, 则A(0,0),B(2,0),C(2,2),E(1,2),F(0,1). →→→
(1)BE=OE-OB=(1,2)-(2,0)=(-1,2), →→→
CF=OF-OC=(0,1)-(2,2)=(-2,-1), →→∵BE・CF=-1×(-2)+2×(-1)=0, →→
∴BE⊥CF,即BE⊥CF.
→→
(2)设P(x,y),则FP=(x,y-1),CF=(-2,-1),
→→→→
∵FP∥CF,∴-x=-2(y-1),即x=2y-2.同理由BP∥BE,得y=-2x+4,代入x=2y-2. 686868→→→→
. ∴AP2=??2+??2=4=AB2,∴|AP|=|AB|,即AP=AB. 解得x=,∴y=,即P??55?5??5?55
⧈ 向量函数思想总结
Excel公式输入其实可以归结为函数输入的问题,
“插入函数”对话框是Excel输入公式的重要工具,以公式“=SUM(Sheet2!A1:A6,Sheet3!B2:B9)”为例,Excel输入该公式的具体过程是:
首先选中存放计算结果(即需要应用公式)的单元格,单击编辑栏(或工具栏)中的“fx”按钮,则表示公式开始的“=”出现在单元格和编辑栏,然后在打开的“插入函数”对话框中的“选择函数”列表找到“SUM”函数。如果你需要的函数不在里面,可以打开“或选择类别”下拉列表进行选择。最后单击“确定”按钮,打开“函数参数”对话框。
对SUM函数而言,它可以使用从number1开始直到number30共30个参数。对上面的公式来说,首先应当把光标放在对话框的“number1”框中,单击工作簿中的“Sheet2!”工作表标签,“Sheet2!”即可自动进入其中,接着鼠标拖动选中你要引用的区域即可,
接着用鼠标单击对话框的“number2”框,单击工作簿中的“Sheet3!”工作表标签,其名称“Sheet3!”即可自动进入其中,再按相同方法选择要引用的单元格区域即可。
上述方法的最大优点就是引用的区域很准确,特别是三维引用时不容易发生工作表或工作簿名称输入错误的问题。
如果你要套用某个现成公式,或者输入一些嵌套关系复杂的公式,利用编辑栏输入更加快捷。
首先选中存放计算结果的单元格;鼠标单击Excel编辑栏,按照公式的组成顺序依次输入各个部分,公式输入完毕后,单击编辑栏中的“输入”(即“√”)按钮(或回车)即可。
手工输入时同样可以采取上面介绍的方法引用区域,以公式“=SUM(Sheet2!A1:A6,Sheet3!B2:B9)”为例,你可以先在编辑栏中输入“=SUM”,然后将光标插入括号中间,再按上面介绍的方法操作就可以引用输入公式了。但是分隔引用之间的逗号必须用手工输入,而不能像“插入函数”对话框那样自动添加。
⧈ 向量函数思想总结
一次函数:一次函数图像与性质是中考必考的内容之一。中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。甚至有存在探究题目出现。
主要考察内容:
①会画一次函数的图像,并掌握其性质。
②会根据已知条件,利用待定系数法确定一次函数的解析式。
③能用一次函数解决实际问题。
④考察一ic函数与二元一次方程组,一元一次不等式的关系。
突破方法:
①正确理解掌握一次函数的概念,图像和性质。
②运用数学结合的思想解与一次函数图像有关的问题。
③掌握用待定系数法球一次函数解析式。
④做一些综合题的训练,提高分析问题的能力。
函数性质:
1.y的变化值与对应的x的变化值成正比例,比值为k.即:y=kx+b(k,b为常数,k≠0),∵当x增加m,k(x+m)+b=y+km,km/m=k。
2.当x=0时,b为函数在y轴上的'点,坐标为(0,b)。
3当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。
4.在两个一次函数表达式中:
当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。若两个变量x,y间的关系式可以表示成Y=KX+b(k,b为常数,k不等于0)则称y是x的一次函数图像性质
1、作法与图形:通过如下3个步骤:
(1)列表.
(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。
正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。(3)连线,可以作出一次函数的图象一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b).
2、性质:
(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。
3、函数不是数,它是指某一变化过程中两个变量之间的关系。
4、k,b与函数图像所在象限:
y=kx时(即b等于0,y与x成正比例):
当k>0时,直线必通过第一、三象限,y随x的增大而增大;当k0,b>0,这时此函数的图象经过第一、二、三象限;当k>0,b
⧈ 向量函数思想总结
篇1:向量证明正弦定理<\/h2>向量证明正弦定理
表述:设三面角∠P-ABC的三个面角∠BPC,∠CPA,∠APB所对的二面角依次为∠PA,∠PB,∠PC,则 Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA=Sin∠PC/Sin∠APB。
目录
1证明2全向量证明
证明
过A做OA⊥平面BPC于O。过O分别做OM⊥BP于M与ON⊥PC于N。连结AM、AN。 显然,∠PB=∠AMO,Sin∠PB=AO/AM;∠PC=∠ANO,Sin∠PC=AO/AN。 另外,Sin∠CPA=AN/AP,Sin∠APB=AM/AP。 则Sin∠PB/Sin∠CPA=AO×AP/=Sin∠PC/Sin∠APB。 同理可证Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA。即可得证三面角正弦定理。
全向量证明
如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°-A,j与向量CB的夹角为90°-C
在向量等式两边同乘向量j,得・
j・AC+CB=j・AB
∴│j││AC│cos90°+│j││CB│cos
∴asinC=csinA
∴a/sinA=c/sinC
同理,过点C作与向量CB垂直的单位向量j,可得
c/sinC=b/sinB
∴a/sinA=b/sinB=c/sinC
2步骤1
记向量i ,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c
=i・a+i・b+i・c
=a・cos)+b・0+c・cos
=-asinC+csinA=0
接着得到正弦定理
其他
步骤2.
在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a・sinB
CH=b・sinA
∴a・sinB=b・sinA
得到a/sinA=b/sinB
同理,在△ABC中,
b/sinB=c/sinC
步骤3.
证明a/sinA=b/sinB=c/sinC=2R:
任意三角形ABC,作ABC的外接圆O.
作直径BD交⊙O于D. 连接DA.
因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C.
所以c/sinC=c/sinD=BD=2R
类似可证其余两个等式。
3
用向量叉乘表示面积则 s = CB 叉乘 CA = AC 叉乘 AB
=>absinC = bcsinA
=>a/sinA = c/sinC
-7-18 17:16 jinren92 | 三级
记向量i ,使i垂直于AC于C,△ABC三边AB,BC,接着得到正弦定理 其他步骤2. 在锐角△ABC中,证明a/sinA=b/sinB=c/sinC=2R: 任意三角形ABC,
4
过三角形ABC 的顶点A作BC边上的高,垂足为D.当D落在边BC上时,向量AB 与向量AD 的夹角为90°-B ,向量AC 与向量AD 的`夹角为90°-C ,由于向量AB、向量AC 在向量AD 方向上的射影相等,有数量积的几何意义可知 向量AB*向量AD=向量AC*向量AD即 向量AB的绝对值*向量AD的绝对值*COS=向量的AC绝对值*向量AD的绝对值*cos所以 csinB=bsinC即b/sinB=c/sinC当D落在BC的延长线上时,同样可以证得
篇2:向量法证明正弦定理<\/h2>
向量法证明正弦定理
向量法证明正弦定理证明a/sinA=b/sinB=c/sinC=2R:
任意三角形ABC,作ABC的外接圆O.
作直径BD交⊙O于D. 连接DA.
因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C.
所以c/sinC=c/sinD=BD=2R
2
如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°-A,j与向量CB的夹角为90°-C
在向量等式两边同乘向量j,得・
j・AC+CB=j・AB
∴│j││AC│cos90°+│j││CB│cos
∴asinC=csinA
∴a/sinA=c/sinC
同理,过点C作与向量CB垂直的单位向量j,可得
c/sinC=b/sinB
∴a/sinA=b/sinB=c/sinC
2步骤1
记向量i ,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c
=i・a+i・b+i・c
=a・cos)+b・0+c・cos
=-asinC+csinA=0
接着得到正弦定理
其他
步骤2.
在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a・sinB
CH=b・sinA
∴a・sinB=b・sinA
得到a/sinA=b/sinB
同理,在△ABC中,
b/sinB=c/sinC
步骤3.
证明a/sinA=b/sinB=c/sinC=2R:
任意三角形ABC,作ABC的外接圆O.
作直径BD交⊙O于D. 连接DA.
因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C.
所以c/sinC=c/sinD=BD=2R
类似可证其余两个等式。
3
用向量叉乘表示面积则 s = CB 叉乘 CA = AC 叉乘 AB
=>absinC = bcsinA
=>a/sinA = c/sinC
2011-7-18 17:16 jinren92 | 三级
记向量i ,使i垂直于AC于C,△ABC三边AB,BC,接着得到正弦定理 其他步骤2. 在锐角△ABC中,证明a/sinA=b/sinB=c/sinC=2R: 任意三角形ABC,
4
过三角形ABC 的顶点A作BC边上的.高,垂足为D.当D落在边BC上时,向量AB 与向量AD 的夹角为90°-B ,向量AC 与向量AD 的夹角为90°-C ,由于向量AB、向量AC 在向量AD 方向上的射影相等,有数量积的几何意义可知 向量AB*向量AD=向量AC*向量AD即 向量AB的绝对值*向量AD的绝对值*COS=向量的AC绝对值*向量AD的绝对值*cos所以 csinB=bsinC即b/sinB=c/sinC当D落在BC的延长线上时,同样可以证得
篇3:用向量证明正弦定理<\/h2>
用向量证明正弦定理
用向量证明正弦定理如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°-A,j与向量CB的夹角为90°-C
在向量等式两边同乘向量j,得・
j・AC+CB=j・AB
∴│j││AC│cos90°+│j││CB│cos
∴asinC=csinA
∴a/sinA=c/sinC
同理,过点C作与向量CB垂直的单位向量j,可得
c/sinC=b/sinB
∴a/sinA=b/sinB=c/sinC
2步骤1
记向量i ,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c
=i・a+i・b+i・c
=a・cos)+b・0+c・cos
=-asinC+csinA=0
接着得到正弦定理
其他
步骤2.
在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a・sinB
CH=b・sinA
∴a・sinB=b・sinA
得到a/sinA=b/sinB
同理,在△ABC中,
b/sinB=c/sinC
步骤3.
证明a/sinA=b/sinB=c/sinC=2R:
任意三角形ABC,作ABC的外接圆O.
作直径BD交⊙O于D. 连接DA.
因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C.
所以c/sinC=c/sinD=BD=2R
类似可证其余两个等式。
3
用向量叉乘表示面积则 s = CB 叉乘 CA = AC 叉乘 AB
=>absinC = bcsinA
=>a/sinA = c/sinC
-7-18 17:16 jinren92 | 三级
记向量i ,使i垂直于AC于C,△ABC三边AB,BC,接着得到正弦定理 其他步骤2. 在锐角△ABC中,证明a/sinA=b/sinB=c/sinC=2R: 任意三角形ABC,
4
过三角形ABC 的顶点A作BC边上的高,垂足为D.当D落在边BC上时,向量AB 与向量AD 的夹角为90°-B ,向量AC 与向量AD 的夹角为90°-C ,由于向量AB、向量AC 在向量AD 方向上的射影相等,有数量积的.几何意义可知 向量AB*向量AD=向量AC*向量AD即 向量AB的绝对值*向量AD的绝对值*COS=向量的AC绝对值*向量AD的绝对值*cos所以 csinB=bsinC即b/sinB=c/sinC当D落在BC的延长线上时,同样可以证得
篇4:正弦定理证明<\/h2>
正弦定理证明
正弦定理证明1.三角形的正弦定理证明:
步骤1.
在锐角△ABC中,设三边为a,b,c。作CH⊥AB垂足为点H
CH=a・sinB
CH=b・sinA
∴a・sinB=b・sinA
得到
a/sinA=b/sinB
同理,在△ABC中,
b/sinB=c/sinC
步骤2.
证明a/sinA=b/sinB=c/sinC=2R:
如图,任意三角形ABC,作ABC的外接圆O.
作直径BD交⊙O于D.
连接DA.
因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C.
所以c/sinC=c/sinD=BD=2R
a/SinA=BC/SinD=BD=2R
类似可证其余两个等式。
2.三角形的余弦定理证明:
平面几何证法:
在任意△ABC中
做AD⊥BC.
∠C所对的边为c,∠B所对的边为b,∠A所对的边为a
则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
根据勾股定理可得:
AC^2=AD^2+DC^2
b^2=^2+^2
b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB
b^2=*c^2-2ac*cosB+a^2
b^2=c^2+a^2-2ac*cosB
cosB=/2ac
3
在△ABC中,AB=c、BC=a、CA=b
则c^2=a^2+b^2-2ab*cosC
a^2=b^2+c^2-2bc*cosA
b^2=a^2+c^2-2ac*cosB
下面在锐角△中证明第一个等式,在钝角△中证明以此类推。
过A作AD⊥BC于D,则BD+CD=a
由勾股定理得:
c^2=^2+^2,^2=b^2-^2
所以c^2=^2-^2+b^2
=^2-^2+b^2
=a^2-2a*CD +^2-^2+b^2
=a^2+b^2-2a*CD
因为cosC=CD/b
所以CD=b*cosC
所以c^2=a^2+b^2-2ab*cosC
题目中^2表示平方。
2
谈正、余弦定理的多种证法
聊城二中 魏清泉
正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法.人教A版教材《数学》是用向量的数量积给出证明的,如是在证明正弦定理时用到作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受.本文试图通过运用多种方法证明正、余弦定理从而进一步理解正、余弦定理,进一步体会向量的巧妙应用和数学中“数”与“形”的完美结合.
定理:在△ABC中,AB=c,AC=b,BC=a,则
c2=a2+b2-2abcos C,
b2=a2+c2-2accos B,
a2=b2+c2-2bccos A.
一、正弦定理的证明
证法一:如图1,设AD、BE、CF分别是△ABC的三条高。则有
AD=bsin∠BCA,
BE=csin∠CAB,
CF=asin∠ABC。
所以S△ABC=abcsin∠BCA
=bcsin∠CAB
=casin∠ABC.
证法二:如图1,设AD、BE、CF分别是△ABC的3条高。则有
AD=bsin∠BCA=csin∠ABC,
BE=asin∠BCA=csin∠CAB。
证法三:如图2,设CD=2r是△ABC的外接圆
的直径,则∠DAC=90°,∠ABC=∠ADC。
证法四:如图3,设单位向量j与向量AC垂直。
因为AB=AC+CB,
所以jAB=j=jAC+jCB.
因为jAC=0,
jCB=| j ||CB|cos=asinC,
jAB=| j ||AB|cos=csinA .
二、余弦定理的.证明
法一:在△ABC中,已知 ,求c。
过A作 ,
在Rt 中, ,
法二:
,即:
法三:
先证明如下等式:
⑴
证明:
故⑴式成立,再由正弦定理变形,得
结合⑴、有
即 .
同理可证
.
三、正余弦定理的统一证明
法一:证明:建立如下图所示的直角坐标系,则A=、B=,又由任意角三角函数的定义可得:C=,以AB、BC为邻边作平行四边形ABCC′,则∠BAC′=π-∠B,
∴C′,asin)=C′.
根据向量的运算:
=,
= - =,
由 = :得
asin B=bsin A,即
= .
同理可得: = .
∴ = = .
由 =2+2=b2+c2-2bccos A,
又| |=a,
∴a2=b2+c2-2bccos A.
同理:
c2=a2+b2-2abcos C;
b2=a2+c2-2accos B.
法二:如图5,
,设 轴、轴方向上的单位向量分别为 、,将上式的两边分别与 、作数量积,可知
,
即
将式改写为
化简得b2-a2-c2=-2accos B.
篇5:正弦定理证明方法<\/h2>
正弦定理证明方法
正弦定理证明方法方法1:用三角形外接圆
证明: 任意三角形ABC,作ABC的外接圆O.
作直径BD交⊙O于D. 连接DA.
因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的'圆周角相等,所以∠D等于∠C. 所以c/sinC=c/sinD=BD=2R
类似可证其余两个等式。
∴a/sinA=b/sinB=c/sinC=2R
方法2: 用直角三角形
证明:在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a・sinB CH=b・sinA ∴a・sinB=b・sinA 得到a/sinA=b/sinB
同理,在△ABC中, b/sinB=c/sinC ∴a/sinA=b/sinB=c/sinC
在直角三角形中,在钝角三角形中。
方法3:用向量
证明:记向量i ,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c ∴a+b+c=0 则i =i・a+i・b+i・c
=a・cos)+0+c・cos=-asinC+csinA=0 ∴a/sinA =c/sinC
方法4:用三角形面积公式
证明:在△ABC中,设BC=a,AC=b,AB=c。作CD⊥AB垂足为点D,作BE⊥AC垂足为点E,则CD=a・sinB,BE= c sinA,由三角形面积公式得:AB・CD=AC・BE
即c・a・sinB= b・c sinA ∴a/sinA=b/sinB 同理可得b/sinB=c/sinC
∴a/sinA=b/sinB=c/sinC
用余弦定理:a^2+b^2-2abCOSc=c^2
COSc=/2ab
SINc^2=1-COSc^2
SINc^2/c^2=4a^2*b^2-^2/4a^2*b^2*c^2
=[2-a^2-b^2-c^2]/4a^2*b^2*c^2
同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2
得证
正弦定理:三角形ABC中 BC/sinA=AC/sinB=AB/sinC
证明如下:在三角形的外接圆里证明会比较方便
例如,用BC边和经过B的直径BD,构成的直角三角形DBC可以得到:
角A=角D
得到:2RsinA=BC
同理:2RsinB=AC,2RsinC=AB
这样就得到正弦定理了
2
一种是用三角证asinB=bsinA
用面积证
用几何法,画三角形的外接圆
听说能用向量证,咋么证呢?
三角形ABC为锐角三角形时,过A作单位向量j垂直于向量AB,则j 与向量AB夹角为90,j与向量BC夹角为,j与向量CA夹角为,设AB=c,BC=a,AC=b,
因为AB+BC+CA=0
即j*AB+J*BC+J*CA=0
|j||AB|cos90+|j||BC|cos+|j||CA|cos=0
所以asinB=bsinA
3
用余弦定理:a^2+b^2-2abCOSc=c^2
COSc=/2ab
SINc^2=1-COSc^2
SINc^2/c^2=4a^2*b^2-^2/4a^2*b^2*c^2
=[2-a^2-b^2-c^2]/4a^2*b^2*c^2
同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2
得证用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-^2/4a^2*b^2*c^2 =[2-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得证
4
满意答案 好评率:100%
正弦定理
步骤1.
在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a・sinB
CH=b・sinA
∴a・sinB=b・sinA
得到 a/sinA=b/sinB
同理,在△ABC中, b/sinB=c/sinC
步骤2.
证明a/sinA=b/sinB=c/sinC=2R:
如图,任意三角形ABC,作ABC的外接圆O.
作直径BD交⊙O于D.
连接DA.
因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C.
所以c/sinC=c/sinD=BD=2R 类似可证其余两个等式。
余弦定理
平面向量证法:
∵如图,有a+b=c
∴c^2=a・a+2a・b+b・b∴c^2=a^2+b^2+2|a||b|Cos
又∵Cos=-CosC
∴c^2=a^2+b^2-2|a||b|Cosθ
再拆开,得c^2=a^2+b^2-2*a*b*CosC
同理可证其他,而下面的CosC=/2ab就是将CosC移到左边表示一下。
平面几何证法:
在任意△ABC中
做AD⊥BC.
∠C所对的边为c,∠B所对的边为b,∠A所对的边为a
则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
根据勾股定理可得:
AC^2=AD^2+DC^2
b^2=^2+^2
b^2=sinB・c+a^2+cosB・c^2-2ac*cosB
b^2=*c^2-2ac*cosB+a^2
b^2=c^2+a^2-2ac*cosB
cosB=/2ac
篇6:正弦定理的证明<\/h2>
正弦定理的证明
用余弦定理:a^2+b^2-2abCOSc=c^2
COSc=/2ab
SINc^2=1-COSc^2
SINc^2/c^2=4a^2*b^2-^2/4a^2*b^2*c^2
=[2-a^2-b^2-c^2]/4a^2*b^2*c^2
同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2
得证
正弦定理:三角形ABC中 BC/sinA=AC/sinB=AB/sinC
证明如下:在三角形的外接圆里证明会比较方便
例如,用BC边和经过B的直径BD,构成的直角三角形DBC可以得到:
角A=角D
得到:2RsinA=BC
同理:2RsinB=AC,2RsinC=AB
这样就得到正弦定理了
2
一种是用三角证asinB=bsinA
用面积证
用几何法,画三角形的外接圆
听说能用向量证,咋么证呢?
三角形ABC为锐角三角形时,过A作单位向量j垂直于向量AB,则j 与向量AB夹角为90,j与向量BC夹角为,j与向量CA夹角为,设AB=c,BC=a,AC=b,
因为AB+BC+CA=0
即j*AB+J*BC+J*CA=0
|j||AB|cos90+|j||BC|cos+|j||CA|cos=0
所以asinB=bsinA
3
用余弦定理:a^2+b^2-2abCOSc=c^2
COSc=/2ab
SINc^2=1-COSc^2
SINc^2/c^2=4a^2*b^2-^2/4a^2*b^2*c^2
=[2-a^2-b^2-c^2]/4a^2*b^2*c^2
同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2
得证用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-^2/4a^2*b^2*c^2 =[2-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得证
4
满意答案 好评率:100%
篇7:正弦定理的证明<\/h2>
步骤1.
在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a・sinB
CH=b・sinA
∴a・sinB=b・sinA
得到 a/sinA=b/sinB
同理,在△ABC中, b/sinB=c/sinC
步骤2.
证明a/sinA=b/sinB=c/sinC=2R:
如图,任意三角形ABC,作ABC的外接圆O.
作直径BD交⊙O于D.
连接DA.
因为直径所对的.圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C.
所以c/sinC=c/sinD=BD=2R 类似可证其余两个等式。
余弦定理
平面向量证法:
∵如图,有a+b=c
∴c^2=a・a+2a・b+b・b∴c^2=a^2+b^2+2|a||b|Cos
又∵Cos=-CosC
∴c^2=a^2+b^2-2|a||b|Cosθ
再拆开,得c^2=a^2+b^2-2*a*b*CosC
同理可证其他,而下面的CosC=/2ab就是将CosC移到左边表示一下。
平面几何证法:
在任意△ABC中
做AD⊥BC.
∠C所对的边为c,∠B所对的边为b,∠A所对的边为a
则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
根据勾股定理可得:
AC^2=AD^2+DC^2
b^2=^2+^2
b^2=sinB・c+a^2+cosB・c^2-2ac*cosB
b^2=*c^2-2ac*cosB+a^2
b^2=c^2+a^2-2ac*cosB
cosB=/2ac
篇8:正弦定理的证明方法<\/h2>
正弦定理的证明方法
正弦定理的证明方法如图1,△ABC中,AD平分乙A交BC于D,由三角形内角平分线有AB BDAC一DC由正弦定理有:由AB AC AB滋nC舀石乙二蕊丽劝元二舀丽””’‘CF平分二C幼器二默…;EF//BC
用余弦定理:a^2+b^2-2abCOSc=c^2
COSc=/2ab
SINc^2=1-COSc^2
SINc^2/c^2=4a^2*b^2-^2/4a^2*b^2*c^2
=[2-a^2-b^2-c^2]/4a^2*b^2*c^2
同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2
得证
正弦定理:三角形ABC中 BC/sinA=AC/sinB=AB/sinC
证明如下:在三角形的外接圆里证明会比较方便
例如,用BC边和经过B的直径BD,构成的直角三角形DBC可以得到:
角A=角D
得到:2RsinA=BC
同理:2RsinB=AC,2RsinC=AB
这样就得到正弦定理了
2
一种是用三角证asinB=bsinA
用面积证
用几何法,画三角形的外接圆
听说能用向量证,咋么证呢?
三角形ABC为锐角三角形时,过A作单位向量j垂直于向量AB,则j 与向量AB夹角为90,j与向量BC夹角为,j与向量CA夹角为,设AB=c,BC=a,AC=b,
因为AB+BC+CA=0
即j*AB+J*BC+J*CA=0
|j||AB|cos90+|j||BC|cos+|j||CA|cos=0
所以asinB=bsinA
3
用余弦定理:a^2+b^2-2abCOSc=c^2
COSc=/2ab
SINc^2=1-COSc^2
SINc^2/c^2=4a^2*b^2-^2/4a^2*b^2*c^2
=[2-a^2-b^2-c^2]/4a^2*b^2*c^2
同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2
得证用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-^2/4a^2*b^2*c^2 =[2-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得证
4
满意答案 好评率:100%
正弦定理
步骤1.
在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a・sinB
-
⬬迷你日记网W286.COm冷门但超值推荐:
- 入党思想汇报800篇 | 发展对象思想汇报4篇 | 入党思想总结 | 总结思想方面 | 向量函数思想总结 | 向量函数思想总结
CH=b・sinA
∴a・sinB=b・sinA
得到 a/sinA=b/sinB
同理,在△ABC中, b/sinB=c/sinC
步骤2.
证明a/sinA=b/sinB=c/sinC=2R:
如图,任意三角形ABC,作ABC的外接圆O.
作直径BD交⊙O于D.
连接DA.
因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C.
所以c/sinC=c/sinD=BD=2R 类似可证其余两个等式。
余弦定理
平面向量证法:
∵如图,有a+b=c
∴c^2=a・a+2a・b+b・b∴c^2=a^2+b^2+2|a||b|Cos
又∵Cos=-CosC
∴c^2=a^2+b^2-2|a||b|Cosθ
再拆开,得c^2=a^2+b^2-2*a*b*CosC
同理可证其他,而下面的CosC=/2ab就是将CosC移到左边表示一下。
平面几何证法:
在任意△ABC中
做AD⊥BC.
∠C所对的边为c,∠B所对的边为b,∠A所对的边为a
则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
根据勾股定理可得:
AC^2=AD^2+DC^2
b^2=^2+^2
b^2=sinB・c+a^2+cosB・c^2-2ac*cosB
b^2=*c^2-2ac*cosB+a^2
b^2=c^2+a^2-2ac*cosB
cosB=/2ac
篇9:《正弦定理》教案<\/h2>
《正弦定理》教案
一、教学内容分析
本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。
本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。
二、学情分析
对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。
三、设计思想:
培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。本节“正弦定理”的教学,将遵循这个原则而进行设计。
四、教学目标:
1、在创设的问题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,探索和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性。
2、理解三角形面积公式,能运用正弦定理解决三角形的两类基本问题,并初步认识用正弦定理解三角形时,会有一解、两解、无解三种情况。
3、通过对实际问题的探索,培养学生的数学应用意识,激发学生学习的兴趣,让学生感受到数学知识既来源于生活,又服务与生活。
五、教学重点与难点
教学重点:正弦定理的探索与证明;正弦定理的基本应用。
教学难点:正弦定理的探索与证明。
突破难点的手段:抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给于适当的提示和指导。
六、复习引入:
1、在任意三角形行中有大边对大角,小边对小角的边角关系?是否可以把边、角关系准确量化?
2、在ABC中,角A、B、C的正弦对边分别是a,b,c,你能发现它们之间有什么关系吗?
结论:
证明:过A作单位向量j垂直于AC,由AC+CB=AB边同乘以单位向量。
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。
七、教学反思
本节是“正弦定理”定理的第一节,在备课中有两个问题需要精心设计。一个是问题的引入,一个是定理的证明。通过两个实际问题引入,让学生体会为什么要学习这节课,从学生的“最近发展区”入手进行设计,寻求解决问题的方法。具体的'思路就是从解决课本的实际问题入手展开,将问题一般化导出三角形中的边角关系——正弦定理。因此,做好“正弦定理”的教学既能复习巩固旧知识,也能让学生掌握新的有用的知识,有效提高学生解决问题的能力。
1、在教学过程中,我注重引导学生的思维发生,发展,让学生体会数学问题是如何解决的,给学生解决问题的一般思路。从学生熟悉的直角三角形边角关系,把锐角三角形和钝角三角形的问题也转化为直角三角形的性,从而得到解决,并渗透了分类讨论思想和数形结合思想等思想。
2、在教学中我恰当地利用多媒体技术,是突破教学难点的一个重要手段。利用《几何画板》探究比值的值,由动到静,取得了很好的效果,加深了学生的印象。
3、由于设计的内容比较的多,教学时间的超时,这说明我自己对学生情况的把握不够准确到位,致使教学过程中时间的分配不够适当,教学语言不够精简,今后我一定避免此类问题,争取更大的进步。
篇10:《正弦定理》说课稿<\/h2>
大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。
一、教材分析
本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的'联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。
根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:
认知目标:通过创设问题情境,引导学生发现正弦定理的内容,掌握正弦定理的内容及其证明方法,使学生会运用正弦定理解决两类基本的解三角形问题。
能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。
情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,激发学生学习的兴趣。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。 教学难点:已知两边和其中一边的对角解三角形时判断解的个数。
二、教法
根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想, 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。
三、学法
指导学生掌握“观察――猜想――证明――应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。
“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。
激发学生思维,从自身熟悉的特例入手进行研究,发现正弦定理。 提问:那结论对任意三角形都适用吗?
在三角形中,角与所对的边满足关系
注意:1.强调将猜想转化为定理,需要严格的理论证明。
2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。
3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。
1.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。
2.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。
1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中
一边的对角时解三角形的各种情形。完了把时间交给学生。
1.在△ABC中,已知下列条件,解三角形. A=45°,C=30°,c=10cm A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列条件,解三角形. a=20cm,b=11cm,B=30° c=54cm,b=39cm,C=115°
学生板演,老师巡视,及时发现问题,并解答。
1.它表述了三角形的边与对角的正弦值的关系。
2.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。
3.会用向量作为数形结合的工具,将几何问题转化为代数问题。
篇11:《正弦定理》说课稿<\/h2>
一、说教材分析
“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验 “观察――猜想――证明――应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。
二、说学情分析
我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。
三、说教学目标
1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。
过程与方法:学生参与解题方案的探索,尝试应用观察――猜想――证明――应用“等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。
情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立”数学与我有关,数学是有用的,我要用数学,我能用数学“的理念。
2、教学重点、难点
教学重点:正弦定理的发现与证明;正弦定理的简单应用。
教学难点:正弦定理证明及应用。
四、说教学方法与手段
为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用”问题教学法",即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。
五、说教学过程
为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:
(一)创设情景,揭示课题
问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?
1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?
问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)
引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。
(二)特殊入手,发现规律
问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在RtSABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?
引导启发学生发现特殊情形下的正弦定理
(三)类比归纳,严格证明
问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的RtSABC不小心写成了锐角SABC,其它没有变,你说这个结论还成立吗?
此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。
问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角SABC改为角钝角SABC,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。(启发引导学生用多种方法加以研究证明,尤其是向量法,在下节余弦定理的证明中还要用,因此务必启发学生用向量法完成证明。)
放手给学生实践的机会和时间,使学生真正的参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。同时,考虑到有部分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的同学上黑板完成,这样做一方面肯定了先完成的同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的'同学有个参考,不至于闲呆着浪费时间。
问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理(此时板书课题并用红色粉笔标示出正弦定理内容)
教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔─威发z940―998{首先发现与证明的。中亚细亚人阿尔比鲁尼z973―1048{给三角形的正弦定理作出了一个证明。也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。不管怎样,我们说在10以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的某某定理来,到那时我也就成了数学家的老师了。当然,老师的希望能否变成现实,就要看大家的了。
通过本段内容的讲解,渗透一些数学史的内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。
(四)强化理解,简单应用
下面请大家看我们的教材2―3页到例题1上边,并自学解三角形定义。
让学生看看书,放慢节奏,有利于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。
我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢? 我们先小试牛刀,来一个简单的问题:
问题7:(教材例题1)SABC中,已知A=30?,B=75?,a=40cm,解三角形。
(本题简单,找两位同学上黑板完成,其他同学在底下练习本上完成,同学可以小声音讨论,完成后教师根据学生实践中发现的问题给予必要的讲评)
充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。
强化练习
让全体同学限时完成教材4页练习第一题,找两位同学上黑板。
问题8:(教材例题2)在SABC中a=20cm,b=28cm,A=30?,解三角形。
例题2较难,目的是使学生明确,利用正弦定理有两种可能,同时,引导学生对比例题1研究,在什么情况下解三角形有唯一解?为什么?对学有余力的同学鼓励他们自学探究与发现教材8页得内容:《解三角形的进一步讨论》
(五)小结归纳,深化拓展
1、正弦定理
2、正弦定理的证明方法
3、正弦定理的应用
4、涉及的数学思想和方法。
师生共同总结本节课的收获的同时,引导学生学会自己总结,让学生进一步回顾和体会知识的形成、发展、完善的过程。
(六)布置作业,巩固提高
1、教材10页习题1、1A组第1题。
2、学有余力的同学探究10页B组第1题,体会正弦定理的其他证明方法。
证明:设三角形外接圆的半径是R,则a=2RsinA,b=2RsinB, c=2RsinC
对不同水平的学生设计不同梯度的作业,尊重学生的个性差异,有利于因材施教的教学原则的贯彻。
篇12:正弦定理说课稿<\/h2>
1正弦定理 2证明方法: 3 利用正弦定理能够解决两类问题:
(1)平面几何法 (1)已知两角和一边
(2)向量法 (2)已知两边和其中一边的对角
例题
板书设计可以让学生一目了然本节课所学的知识,证明正弦定理的方法以及正弦定理可以解决的两类问题。
